
AFCRL-67-0626 

Reports of the Department of Geodetic Science 

© 

Q 

Report No. 92 

KINEMATICAL GEODESY 

by 

Helmut Moritz 

Prepared for 

Air Force Cambridge Research Laboratories 
Office of Aerospace Research 

United States Air Force 
Bedford, Massachusetts 01730 

Contract No. AF19(628)-5701 
Project No. 7600 

Task No. 760002,04 
Work Unit No. 76000201, 76000401 

Scientific Report No. 16 

Contract Monitor: Bela Szabo 
Terrestrial Sciences Laboratory 

The Ohio State University 
Research Foundation 

Columbus, Ohio 43212 

November, 1967 

- D D C 

\V{ MAR 11 1363  j|!i 
fairly LhN lO 

C 

Distribution of this document is unlimited. It may be released to the 
Clearinghouse, Deportment of Commerce, for sale to the general public. 

-)3 



AFCRL-67-0626 

Reports of the Department of Geodetic Science 

(This series is a continuation of the reports of the 
Institute of Geodesy, Photogrammetry, and Cartography) 

Report No. 92 

KINEMATICAL GEODESY 

by 

Helmut Moritz 

Prepared for 

Air Force Cambridge Research Laboratories 
Office of Aerospace Research 

United States Air Force 
Bedford, Massachusetts 01730 

Contract No. AF19(628)-5701 
Project No., 7600 

Task No. 760002, 04 
Work Unit No. 76000201, 76000401 

Scientific Report No. 16 

Contract Monitor:  3ela Szabo 
Terrestrial Sciences Laboratory 

The Ohio State University 
Research Foundation 

Columbus, Ohio 43212 

November 1967 

Distribution of this document is unlimited.   It may be released to the 
Clearinghouse, Department of Commerce, for sale to the general public. 



FOREWORD 

This report was prepared by Helmut Moritz, Professor, Technische 
Universität Berlin, and Research Associate, Department of Geodetic Science 
of The Ohio State University, under Air Force Contract No. AF19(628)-5701, 
OSURF Project No. 2122, Project Supervisor, Urho A. Uotila, Professor, 
Department of Geodetic Science.   The contract covering this research is 
administered by the Air Force Cambridge Research Laboratories, Office of 
Aerospace Research, Laurence G. Hanscom Field, Bedford, Massachusetts, 
with Mr. Owen W. Williams and Mr. Bela Szabo, Project Scientists. 

ii 



ABSTRACT 

\ 
With the use of moving instruments, such as airborne gravimeters, which 

are often related to precise inertial stabilization systems, the essentially statical 
character of geodesy begins to be enlarged by kinematical features.   The potential 
of gravity, combining gravitational attraction and centrifugal force, is no longer 
adequate for kinematics, but other inertial forces of Coriolis type must also be 
considered. 

The main purpose of the present paper is an investigation of the geodetic 
aspects of the interrelation of gravitational and inertial forces and their separa- 
tion by means of structural differences in their respective fields.   For a deeper 
insight, the general theory of relativity is indispensable; it also furnishes con- 
venient mathematical techniques. 

The extraction of purely gravitational effects is possible with second and 
third derivatives of the potential; therefore geodetic applications of these quantities 
are discussed, integral formulas similar to Stokes' integral being given for this 
purpose.. 
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KINEMATICAL GEODESY 

Introduction 

Until recently, geodetic measurements were usually performed with 

stationary instruments, that is, instruments at rest on the earth's surface, 

such as theodolites or gravimeters.   Therefore, only the statical features of 

the earth and its gravity field were of geodetic interest.   A typical example is 

the omission of the Coriolis force from the gravity field of the earth, because 

this force acts on moving bodies only. 

With the advent of artificial satellites and precise inertial navigation 

systems, and with the development of shipborne and airborne systems for 

gravity measurement, the element of time is now entering into physical geodesy; 

the essentially statical character of geodesy begins to be enlarged by kinematical 

features.  As a simple example, Coriolis forces show up in marine and aerial 

gravimetry.   This indicates that the potential of gravity, combining gravitational 

attraction and centrifugal force but excluding the Coriolis force, is no longer 

adequate for treating certain kinematical effects of the earth's gravitational field. 

The Principle of Equivalence, as expressed by the identity of inertial and 

gravitational mass, makes it possible to combine gravitational attraction and 

centrifugal force, which is an inertial effect, into a unified force, gravity.   The 

same principle, however, also makes it extremely difficult to separate the effect 

of undesirable inertial forces from the genuine gravitational forces, in which we 

are interested in gravity measurement. 



This problem of separation of inertial and gravitational forces is important 

if the measuring system is exposed to irregular accelerations, such as aboard a 

ship or an aircraft.   It does not occur in considering the motion of a satellite. 

f,ince the main purpose of the present report is an investigation of the geodetic 

aspects of the interrelation of gravitation and inertia, satellite dynamics is 

naturally excluded here. 

In a sense, the problems of aerial gravimetry and inertial positioning 

(navigation) are inverse to each other,   hi aerial gravimetry, outside geodetic 

information is used to separate gravitational from inertial effects in order to 

measure gravity (or othar quantities c ■ the gravitational field).   In inertial 

navigation, the gravitational field is needed as an input to obtain position (which, 

applied to geodesy, means geodetic position).   Schematically we may write 

Aerial Gravimetry 

} Gravity Field; 
Geodetic Position 

Inertial Navigation   -, 
>       > Geodetic Position. 

Gravity Field 

Separating gravitational from inertial effects wholly without outside 

(noninertial) information is impossible; it would be a bootstrap operation to get 

the positional information in aerial gravimetry wholly from inertial navigation. 

Still, the degree to which such outside information is needed varies considerably 

from method to method.  Auxiliary factors that permit a certain discrimination 

between gravitational and inertial effects are: 



A. Statistical frequency behaviour. The disturbing accelerations usually 

have a higher frequency than gravity; thus they may be removed, to a 

certain extent, by filtering techniques. 

B. Structural differences between the gravitational and the inertia! fields. 

The second field is more regular than the first. 

Filtering techniques based on statistical behaviour are discussed in another 

report (Moritz, 1967).   Here we shall investigate the mathematical structure of 

the fields involved and geodetic applications. 

It turns out that factor B has no effect on the gravity g (or more generally 

speaking, on the first derivatives of the potential), so that factor A must be used 

with measurements of g.  It is only in second and higher derivatives that the 

structural differences between gravitational and inertia! fields will contribute to 

their separation. 

For this reason, we shall in Chapter 1 give a theoretical (perhaps some- 

what unconventional) outline of possible geodetic uses of second and third deri- 

vatives of the potential. 

Chapter 2 is devoted to theoretical aspects of measurement of these deriva- 

tives, with emphasis on separability of inertial and gravitational effects because of 

the structure of their respective fields.   The approach through classical mechan cs 

is simple and straightforward.   However, since the Principle of Equivalence ct»n- 

not be explained on the basis of classical mechanics, but can be understood only 

on the basis of Einstein's general theory of relativity, there will always be the 

shadow of a doubt in arguments involving classical mechanics only; we shall try 



to remove this shadow by a rather detailed study of the relativistic aspects of the 

problem. 

Time is obviously the key concept in the kinematical1 applications of geodesy. 

Since time is a natural part of the space-time of the theory of relativity, we may 

expect conceptual and mathematical advantages in applying this theory to kine- 

matical geodesy.   As an example, certain relativistic quantities generalize the 

potential so as to contain the Coriolis force as well as gravitational attraction 

and centrifugal force:- see sec. 2.3.1. 

1 We prefer the term "kinematical" to "dynamical" for two reasons.   First, 

"dynamical geodesy" is often used equivalently with "physical geodesy," 

and second, the general theory of relativity is kinematical rather than dynamical 

in character. 



1.   Geodetic Use of Gravitational Gradients 

!    I 1.1.   Second Derivatives 

Let us assume that all second derivatives of the gravitational potential V 

in an earth-fixed coordinate system xyz have been measured along a line which, 

for instance, represents the flight path.   These second derivatives form a matrix 

V 

\     V V 

«r        x* 

V        V yx        'yy        'yz 

\ 

(1) 

where, as usual, 

•i2 
v      m£l        v      S£V 
"      ^x3    '     v"      axsy 

etc. (2) 

V      = V vy*        v«y 

This matrix is symmetric because 

etc. 

If all second derivatives have been measured, so that the whole matrix (1) is known, 

then the first derivatives, the components of the vector of gravitational force, 

F - (Vx, Vy, V2)sgradV, (3) 

are obtained by integration along the flight path.   For instance, 

V,   ■ (\)0 
+ J   (V^dx+V^dy+V^dz) • 

(Vx)0 refers to an initial point P0 on the flight path, and Vx refers to a current 

point P.   It is understood that the flight path is known as a function of time t: 

x = x(t)  , 

y = y(t) , (4) 

z = z(t)  . 



Then 

dx = x dt, etc. 

(the dot denoting differentiation with respect to tim^, so that we obtain 

vx - (V,). + J (V„x+v„y+v„2)dt, 

Vy   " <V,)o + J   (Vyxx+Vyyy+Vyiz)dt, (5) 
po 

p 

V,   - (V.J.+ J   (VlTx-KVtyy+VIzz)dt. 
% 

Another integration gives the potential V itself: 

V = V8 + J   (V^x+Vyy+V^Jdt  . (6) 
% 

The initial data (V,)0» (Vy)0, (Vx)e, V0 must be assumed to be known. 

It is characteristic for mis method that the data (1) are needed only along 

aline (the flight path).   External geodetic information, as mentioned in the Intro- 

duction, is required in this method to obtain the flight path (4), which is necessary 

to perform the integrations (5) and (6). 

1.2.   Second Horizontal Derivatives 

We consider the quantities 

Wry-W**5WAandWxy   , (7) 

which can be measured with a torsion balance (Baeschlin, 1948; Mueller, 1963). 

Here W denotes the gravity potential, the sum of the gravitational potential V 

and the potential of centrifugal force.   The derivatives are taken with respect to 

a local coordinate system having a vertical z-axis, so that the quantities entering 

in (7) are horizontal derivatives. 

6 



As usual, we define the anomalous potential T as the difference of W and 

the normal gravity potential U: 

T = W - U. (8) 

Since the normal values of (7), U   and Uxy, are known (Mueller, 1963, p. 147), 

we obtain from (7) also 

Trr "Txx   = TA  and Txy   . (9) 

It is well known that 

C - £ T (10) 

(G representing a mean value of gravity) gives the height anomaly (the separation 

between corresponding geopotential and spheropotential surfaces), and that 

*  =  "G  T*   '   *  =  "G  Tr <U> 

give the components of the deflection of the vertical (the x-axis pointing northward). 

By (9) and (11), the quantities 

1 
G 

• 1   T 

i (12) 

** " nr   = G TA 

are obtained from torsion balance measurements.   The problem is to find the 

deflection components 4 and r\ and the height anomaly £ by a suitable integration 

of (12). 

This integration is usually performed by a numerical method, the mathe- 

matical significance of which is not immediately evident.   Mathematically, the 

integration of (x2) poses an interesting and not too difficult problem in partial 



differential equations, which we shall consider now.   Apart from the theoretical 

interest, the mathematical insight gained in this way may also be of indirect 

practical use. 

We shall limit our considerations to a restricted part of the earth's 

surface, which may for the present purpose be assumed to be plane.   The 

quantnies (12) are assumed to be given at each point of this plane area, as 

functions of x and y: 

£, * v* B <p(x,y) , 

£v -77y  » j/»(x,y)  , 

where we have put. 

<p(x,y) = -Q Tx,  •  *<x.y) " G TA * (14) 

The problem is to solve the system of partial differential equations (13) for £ 

and 77, that is, to find functions 

£ s 4<x»y) t   i) = Tj(x.y) 

satisfying (13). 

Conceptually it would even be simpler to consider the system of partial 

differential equations 

T,,   = ~G(p(x,y)  , 
(15) 

T„ "Ty,   ■  ~G0(x,y)   , 

equivalent to (13) but containing only one unknown function T, but the solution of 

(13) is easier. 

(13) 



The general solution of the first equation of (13) must have the form 

7 

I »   J   <p(x,y')dy' + F(x)   , (16) 

where F(x) is an arbitrary function of x.   This is readily verified by substitution. 

For reasons of convenience we put 

F(x)  = A + B(x-x0) + U(x)   , 

where A and B are arbitrary constants and U(x) satisfies the conditions 

UfxJ = U^xJ = 0 (17a) 

but is arbitrary otherwise. 

Thus we obtain from (16), adjoining an analogous equation for n > 

£ »   |  ^(x,y')dy» + A + B(x-x0)i-U(x)   , 

(18) 
X 

Vs! tfx',y)dx' + C + D(y-y0) + V(y)   , 
X 

o 

where V(y) satisfies 

V(yn)  = Vy(y0)  = 0 (17b) 

but is arbitrary otherwise. 

Now the functions U(x) and V(y) are determined by means of the second 

equation of (13).   The insertion of (18) gives 

I, -",   = J  <A,(*.yW - | <py(x»,y)dx' + 

+ B - D + U,(x) - Vy(y)  = tf>(x,y)   . (19) 

Setting y = y0  in this equation and considering (17b) we obtain 

u«(x)  "   I   ^(x'.yjdx' + y(x,y0) - B + D  . 



Since Ux = dU/dx, this equation may be integrated to give 

U(x) =   J   (x-x')<oy(x',y0)dx' + |  ^(x',ye)dx» + (D-B)(x-x0)  . 
X X 

o o 

Here we have used the fact that 

~ | (x-x») f (x')dx' = f f(x')dx« (20) 
a » 

and considered (17 a).   In exactly the same way (by setting x ■ x„ in (19) and 

integrating) we find V(y), so that (18) becomes 

y x 

4 - J* <P<x,yW + J* <x-x') <Py (x'.yo)dx' + 

X 

+ J* vMjUdx'+A+Dtx-xJ   , 

T? - | «p(x',y)dx,+ f (y-y')«plt(x0,y')dy 

- J  WwW + C + Bfy-y,)  . 

To further investigate this solution, we form the derivatives 

y * 

4,   - S «Mx.yW + J* <py(x',y0)dx' + <Mx,y0) + D  » 

x y 

f?y   = J«Py(x',y)dx»+ /(AcfXo.yW -^(Xo.yJ + B . 

Now 

and 

(21) 

(22) 

j <px(x,y')dy'- J^^.y'Jdy'  = J J «p, x (x\ y«) dx'dy» 
y0 yo *o 'o 

B-D = W^.y.)   . (23) 

y 

S 
1 

10 



as may be seen by setting x = \,   y = y.,  in (19),   Thus we find from (22) 

4* -fir " | I   [Ä«(x,.y')-*VT(x,,y,)]dx'dy« + 

With the identity 

4>(x, yQ) + W«B . y) - M\. y0) ■ W*. y) - J  / 4., (*'. y') «fc'dy' 

4x-t?T -w*.y)+ j 1 iA<»<x%yo-fl/ywyv-&y(x\y,}!d^y' • 

this becomes 

*     y 

J J 

This agrees with the second equation of (13) only if 

fl.« "<Pyy "4,   s   °   • <»*> 

The equation (24) thus constitutes the integrability condition of the system 

(13).   The data functions <p(x, y) and ^(x, y) cannot be prescribed arbitrarily but 

must satisfy the integrability condition (24).   Errorless data will automatically 

satisfy (24) because by (14) 

<Acx "<Pyr -fcry   = Q   <~T*yx* + Txyyy " Tyyxy 
+T»«y) 

= Q  ("™XJXT + ^«yyy ~    xry? + ™mr'   5  "   ' 

With empirical data, (24) must be enforced by an adjustment if necessary. 

To determine the constants A, B, C, D in (21), we put x = x„, y = y0 

in (21) and (22).   Using (23) we readily obtain with ^   = £(x0 ,y0), etc.: 

A - <je,     B = (&,)„,     C = Tfc.     D = (rjy)0   . 

Only three of these constants are independent, because B and D are connected 

11 



(25) 

by (23), so that 

D   "   fty)o    =   (4Jo  -0(Xe,yo)    • 

Thus (21) assumes the final form 

4 ■ 4o M(|,)o -Mvy.)](x-*) + 

+ J* «p(x,y')dy' +  f (x-x»)<py(x',y,)dx' + J>(x\y0)dx', 

n - Vo +(C,)o(y-ya) 
+ 

« y y 

+ / (p(x', y) dx« + J (y-y') ^ (x„, y«) dy' + / jj> (x„, y«) dy»  . 
*o *0 To 

The three quantities £0, Tfc, (4S)0 must be given at the initial point Pe, 

and the date functions p and 4> must satisfy the integrability coriition (24). 

Then 4 and r\ are given by (25).   If we wish, we may use 4 and t) SO obtained 

to get £ or T by the usual method of astronomical leveling: 

p 

C -Co - J* (4dx + Tjdy)   . (26) 

It should be noted that the integrations needed to determine 4 by (25) are 

extended over the horizontal or the vertical part of the full line in Fig. 1, whereas 

the integrations for rj involve the broken line in Fig. 1. 

This method presupposes the functions o(x, y) and $(x, y) to be given at 

every point of a certain region, thus sharing a general characteristic of physical 

geodesy.   It is theoretically rigorous, apart from the approximation of the reference 

ellipsoid in a small region by a plane.   Extensions to a spherical or ellipsoidal 

surface of reference, although simple in principle, lead to awkward formulas. 

12 
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Figure 1 
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As a matter of fact, measurements of <p and n> are performed at discrete 

points only, so that the integrals in (25) must be replaced by sums.   It seems 

preferable, however, to start from rigorous expressions such as (25) and find 

practical approximations for them, rather than starting from approximations 

right away. 

It is clear that instead of prescribing £„, t)0, (£„ )0 it is better in practice 

to prescribe £0, r)0 and, say £x at a different point P1.   The expression of &,, 

Vo» (£«)o °y ?o» Vo> 4i or °y Co» tfe» Vi fcy means of (25) is straightforward 

and may be left to the reader. 

Finally we remark that the horizontal derivatives (9) may also be measured 

by airborne equipment.   If these quantities are measured in this way along a level 

surface, formulas (25) and (26) may be applied to get T; by adding the normal 

gravitational potential to T, the potential V is obtained. 

1.3.   Second Vertical Derivatives 
■ 

Using the notations of the preceding section, we consider the quantity 
i 
! 

T 

Since the z-axis coincides with the local vertical, this is the second vertical j 

derivative of the anomalous potential (8). 

Assuming Tz z to be known at every point of a level surface, we shall 

now derive an integral formula expressing T in terms of Ttl.   We consider the 

spherical approximation, that is, we replace the reference ellipsoid formally by 

a sphere; this approximation is also used in Stokes' formula. 

14 



I 

Then we have 

T»5^"-P-T"- (2" 
since the normal to a sphere is directed along the radius vector r.   We shall now 

follow a procedure described in (Heiskanen and Moritz, 1967, pp. 88 and 97), usiug 

the same notations. 

We expand the anomalous potential T into a series of spherical harmonics: 

T(r,0,X) =   £ C^*)n+1 TB(8,X)  • (28) 

Differentiating twice with respect to r we obtain in space 

Trr(r,fl,X) = 2 (n+1) (n+2) ;—- TB (8,X)   , 

and at the level surface under consideration (r=R) 

T„   - h I (n+1) (n+2) TB (8,X)   . (29) 
a    o 

We may also directly express Trr as a series of Laplace's surface harmonics: 

Trr   = gTrr „(8.X)   . 
o ' 

Comparing these two series yields 

T       (fi X)  _ (n+1) (n+2)  R?  
itrB\fj,A) R2 in JH.AJ   .      i„       (n+l) (n+2)     rr»n   ' 

so that on the level surface (r=R) 

According to a well-known formula for spherical harmonics (Heiskanen and 

Moritz, 1967, p. 30) we have 

15 



T",. ■ %?• JJX.p, <«*«»d, ■ 41   a 

'-SjifeJT *»*.<«•»* 

so that (30) becomes 

Ra  a     2n+ 
<*-2)    r 

Bj' interchanging the order of summation and integration (which may be shown to 

be permissible) we get 

l£  pp r «      2n+l 

a 

T-sf[?Äp-«]^- 
On putting 

M*' ' * »3*4 P- <COS*> <31) 

we have 

T -5 JJ TrAWdc  • (32) w a 

This integral formula is completely analogous to Stokes' formula: it 

expresses T in terms of Trr just as Stokes1 formula expresses T in terms of 

Ag.   Even the expression (31) for the function S1(^i) is comparable to the expression 

of Stokes' function S(^) in terms of spherical harmonics (Heiskanen and Moritz, 1967, 

P. 97). 

We shall now develop a closed expression for the function S1 (ij)) by summing 

the series (31).   The function 

f<^>  * 7 = Vl-2tcoU* <33> 

may be expanded as 

16 



[   I 
! j 
i ! 

i 
i i 

t{t,1>) - t *Pn(cos^) (34) 
o 

(Heiskanen and Moritz, 1967, p. 33).   By consecutive integrations wim respect to 

t we obtain 

MM) - J *M)Ä = £ nTf P» <co8^  ' 
0 0 

* a»        x,+s 

M*.*> - J Mt.*)* - 1 ^^ Pn  , (35) 

M*.*> = / Mt.*)* - 1 (ntl) g£ (ttt3) P. • 
According to (Smirnow, 1966, p. 46) we nave 

MM) - I (x-t)f(t)dt  , 
o 

17 

(36) 

MM) -if  (x-t)2f(t)dt . 

From (35) and (36) we obtain with x = 1 and l/t defined by (33): 

The integrations, to be performed by standard methods, give 

hjty) = jen(l+l/sin|)  , 

b^ty) =  2sin2|jtn(l+l/sin|) + l-2sin| , 

ha to) = (-sin81+38^1 ina+l/sin^) + 

— dt . 

(38) 



After these mathematical preliminaries we can at once determine the sum (31). 

We have 

S^*)=L(n^UP«(C08,6) 

E
CnTI-^lMn7ü)Pn<C08^ 

=  2\ (0)   -  31^ ty)   , 

so that from (38) we obtain our final result 

S^)  = (2-6sin2|)xn(l+l/sin|)  - 3 + 6sin| . (59) 

This function is to be used in the integral formula (32). 

1.4.   Third Vertical Derivatives 

The measurement of second derivatives requires a gyroscopically stabilized 

measuring system.   Third derivatives may be obtained without gyroscopic stabili- 

zation (sec. 2.2 ).   Therefore we shall develop an integral formula corresponding 

to (32) but involving third vertical derivatives 

T   .   = T        . (40) 

We form the third derivative of (28) with respect to r and set r ■ R, 

obtaining 

Tr„   = -~  L(n+l)(n+2)(n+3)Tn(fl,X)   . (41) 

By exactly the same process by which we derived (32) from (29) we obtain from 

(41) 

T " £-JTTrr,%«>>dar (42) 

18 



(44) 

with 

*><*> " " } (^1)^2)^3) P« «~»» <«> 

corresponding to (31). 

The series (43) may be readily summed.   We have 

*W  =   K~<^I)W+ (n+l)(n!2)(n+3))P-(C°8^ 

=  -   211,0)  +   Ofety)   , 

using the notation of (37).   From (38) we obtain at once our final result 

hW s (-9sina| + 15siri*|) xnfl+l/sinl) - 

3j    . . ib _,_ 15   . a lb       . c -a tf> - - +  4sin| + —sin2| -  ISsm3! . 

This function is to be used in the integral formula (42). 

1.5.   Transformation of Gradients 

In conformity with geodetic usage, we shall use the term "(generalized) 

gradients" for the second and third derivatives of the potential.   The problem of 

transforming these gradients from one rectangular coordinate system to another 

occurs frequently; for instance, it may be required to transform them from a 

system fixed to the measuring equipment to a system fixed to the earth. 

It is convenient to use the symbols x1 ,  Xg,  Xg for the coordinates 

x, y, z.   Let the original system be (x,1, x^, x^)  , and the new system 

(Xj, Xj.  XQ).   The transformation equation may be concisely written as 

3 
x,'   -    £ aliXj   , (45) 

Jtrl 

19 



or as the matrix equation 

/hi        *12        ai3\       f\\ 

^l        *a2        ^3 

32 a33 

\ 
(45«) 

\ 

Here the element a, j  is the cosine of the angle between the old Xj'-axis and the 

new Xj-axis. 

The matrix (at ^) is orthogonal, that is, its elements satisfy the six 

conditions 

£ atkan   = on   =' (46) 
1.    j  ■ i    . 

10,    j  ji  i    . 

Since the nine elements a{}  are connected by six conditions, they must be functions 

of three independent parameters, corresponding to the three degrees of freedom of 
a 

rotation.   For these parameters one may take the three Eulerian angles 0,0,$ 

in terms of which we have (e. g., Goldstein, 1950, sec. 4-4). 

a11 = cos<pcos0 - simp sin0 cos 0, 

ais = BitKpcosil) + cos (p sin ij) cosQ, 

aj3   = sin^sinb, 

a21 = - cos^sin^ - sincpcos^cosö, 

a^ = - sin<psin^ + cospcos^cosQ, 

as3  = cos^sind, 

agj   = sinpsinö,        a^   <= - cos0Sin6,        ag3   = cosö  . 

The gradients in the original system will be denoted by a prime, so that 

(47) 
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_ftaT a3T 
T,,J = ax^x; '     Tn* " axjaxjaxj   ; (48a) 

similarly in the new system 

Tti   * ix^x7 '        T*Jk   = ax^x^       * (48b) 

By the usual rules of partial differentiation we have 

a*!      p=i^ ax,      p   
p! ax; 

using (45).   Further differentiation yields, on introducing the abbreviations (48a, b), 

Tu =  s   SINJ
T

;, • <49> 
3 
E 

p,q=l 

3 
T,n -     i     SiNi««*;,, • (50> 

P,q,r=l 

As an example, in sec. 1.3  we used Tzz , and in sec. 1.4 we used Txzz. 

Since in our new notation z • Xg, we have by (49) and (50) 

Tz,   -  T33   =      L    VVT;,   , (49') 
p,q=i 

TfII   = T333  =       £      ap3aq3ar3T'qr   , (50») 

where a 3 is the cosine of the angle between the old xj -axis and the new ^-axis, 

that is, the cosine of the angle between the local vertical and the old xi -axis. 
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2.   Kinematical Measurement of Gravitational Gradients 
(Theoretical Background) 

2.1.   Separation of Gravitational and Inertial Effects 

A gravimeter mounted aboard an airplane will measure the resultant of 

gravitational force and inertial acceleration due to irregular motion of the air- 

craft; the gravimeter will not be able to separate gravitational and inertial com- 

ponents.   The reason is the equality of "gravitational mass" and "inertial mass," 

which has been established experimentally to an extremely high accuracy by Etttvös 

and others and explained by Einstein in his general theory of relativity.   This is 

the Principle of Equivalence, according to which gravitation and inertia are 

essentially identical. 

This principle seems to exclude any hope of separating gravitational and 

inertial effects.   In fact, if the force vector at one particular point only is con- 

sidered, this force cannot be separated into its gravitational and its inertial parts 

because of the identity of gravitational and inertial mass.   Such a separation is, 

however, possible with higher-order gradients because of the structural differences 

between gravitational and inertial fields. 

The practically simplest approach to this problem is in terms of classical 

mechanics (sec. 2.2 ), but this approach is not quite satisfactory because gravita- 

tional and inertial forces are treated as different concepts from the outset,   /hich 

seems to be contrary to the Principle of Equivalence. 

A deeper understanding requires a relativistic analysis (sec. 2.3 ).   The 

general theory of relativity is considered the best theory of gravitation available 
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at present.   It gives an explanation of the equality of gravitational and inertial 

mass by showing that these two kinds of mass are identical, whereas according 

to classical mechanics this equality is an accidental coincidence.   Although the 

relativistic treatment will confirm the results of the classical mechanics, it is 

necessary in order to dispel the doubts raised by the Principle of Equivalence. 

In addition, the relativistic approach is quite appropriate to kinematical gravimetry 

because time, the kinematical element, is woven naturally into 1 unified space- 

time structure. 

2.2.   The Approach Through Classical Mechanics 

It will be convenient to use a similar notation as in sec. 1.5, denoting the 

coordinates x, y, z by Xj, Xg, Xg,  or briefly by x,, where 1*1, 2, 3. 

Consider an inertial coordinate system Xt, that is, a coordinate system in 

which the Newtonian equations of motion 

X,   = Ft (51) 

hold.   A dot denotes differentiation with respect to time; therefore, X,  will be the 

components of the vector of acceleration; F,  are the components of the force acting 

on a unit mass.   Hence (51) is the well-known law: the force equals the product of 

mass (taken as unity) and acceleration. 

Consider now another rectangular coordinate system x,  rigidly connected 

with the measuring apparatus.   The systems x,   = (x,y,z) and X,   ■ (X, Y, Z) 

will be connected by an orthogonal coordinate transformation of the well-known form 

X,   -    S  a,jXj +Bt   , (52) 
3=1 
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which differs from (45) only by B, which denotes a displacement of the origin of the 

system x,  corresponding to the motion of the aircraft.   Both the rotation matrix 

a, j and the displacement vector B, are functions of the time t. 

We shall now introduce the familiar summation convention (e. g., James 

and James, 1959, p. 377), according to which the mere repetition of an index is 

sufficient to denote summation with respect to this index over its range. Hence 

(52) may be abbreviated as 

X,   = a,, Xj + B,   , (52») 

the summation being indicated by the repetition of the index j. 

Repeated differentiation of (52*) with respect to the time t yields 

X*   = "ij*i + auxi + B,   , 
(53) 

xi  ■ auxj + 2anxj +änxj +ßi   • 

Combining (51) and (53) we obtain 

ai i xi   ~ Fi " 2ai i X) " ai j xi " Bi   • 

Multiplying by a, k (the summation with respect to i is then automatically implied) 

we obtain 

aik
aijxj   = ancF! -^k^jXj -a^^jXj -a^B,   . (54) 

In agreement with (46) we have 

a,van   = 6k3 (55) 

(the summation may as well be over the first index i as over the second index as 

in (46)).   Hence the left-hand side of (54) becomes 

atkaijXj   = 6k3Xj   » X,   , (56a) 

since 6V,  is zero for j 4 k and unity for j = k. 
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Multiplying (52') by alk we find 

^k^j    =   aika!JX3    +   a!k^i     • 

Just as in (56a) we have at k a,, x,   = \, so that we obtain 

\   - ^X,   - bk (57) 

with 

bk   ~ aikBi   • 

Equation (57) represents the transformation inverse to (52') .   From (57) we see 

that 

*k   = a,**, (56b) 

will denote the components of the force in the system x,; and similarly we put 

K  - aikfc,   . (56c) 

so that bk may be interpreted as the second time derivative of bk with a, k held 

constant. 

By means of (56a, b, c) we reduce (54) to 

*k   - K   ~  2aikai3k3    "  aikauXj   - \   • (58) 

This system may still be further transformed. 

Differentiating (55) with respect to time, remembering that the right-hand 

side is identically constant, we find 

aikan   + aikan   " °  ' (59> 

so that the matrix 

wJk   = alkan (60) 

is skew-symmetric: 

wjk    "   "   wkj    • 
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The matrix w} k characterizes the instantaneous rotation since it may be shown that 

the vector 

u> = (CÜJ, u)z, (iis) ; 

has the direction cf the instantaneous axis of rotation (with respect to the moving 

system x,); the magnitude of o> , 

Iwl s   v wf3   + wfT   + wf2    = CO , 

is the instantaneous angular velocity between the systems x, and X, . 

By differentiating (60) we find 

■ •    • .    ** 

on the other hand, 

wUwk*  = \iks\lK*   ' ».AA*   = änä!lt , (61) 

so that 

With (60) and (62), equation (58) goes over into 

\   = fk " 2Wjkk3 -(wJk -w^w.^Xj -Bk 

or, on replacing the index k by i and using (61), 

x,   = f, +2w15xJ +(wn +wlkwlv)Xj -B,   . (63) 

This is the final form of the equations of motion in the moving system x, •1 

It is not of the Newtonian form (51).   To put it into a Newtonian form, 

x,   = £,*  , (64) 

For a more sophisticated derivation see (Morgenstern and Szabo, 1961, pp. 7-9). 
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we must set 

f *  = f, + 2wnx3 + (w, kwJk + wt j)x, - b,   , (65) 

thus adding to the "true" force f,  certain fictitious "inertial forces," of which 

is the Coriolis force, and 

W! k WJ k XJ 

is the centrifugal force. 

If we consider fj to be the gravitational force, it is the gradient vector of 

the gravitational potential V, 

f. ■ g • <M> 
but the output of our measuring system, which operates according to the Newtonian 

form (64), will be f,*. By (65) and (66), with x,   = 0 because the measuring system 

is at rest with respect to the frame xyz, we have 

—■  = f* - (w, kw, k + w,, )Xj + B,   . (67) 

This equation forms the starting point for our conclusions.   Successive 

partial differentiations with respect to xi yield 

(68) 

(69) 

We shall now distinguish two cases: 

1.   No inertial stabilization.   The measuring instrument is rigidly connected to the 
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aircraft and follows its linear acceleration and its rotational movements.   Then 

both the gravitational vector, by (67), and the second derivatives, by (68), will 

falsified by inertial effects, but the third derivatives of the potential will no 

longer be affected by inertia! disturbances, as (69) shows. 

2.   Inertia! stabilization.   Here the instrument axes xyz will be kept constantly 

parallel to inertial axes XYZ (to assume the simplest case) by inertial 

stabilization.   Then 

wi i  ' ° » 

and (67) and (68) reduce to 

gr « t? * ß, , (70) 

J£v_ . tt . (71) 
?^Xj 9X. oX, 

Here the gravitational vector, by (70), is still affected by linear accelerations, 

but inertial disturbances are absent already in the second derivatives (71). 

Hence, by measuring higher derivatives of the potential, it is indeed possible 

to separate gravitational effects from inertial disturbances.1 

1 Preliminary considerations along this line have been made by Balabushevich (1954); 

the separability in the higher derivatives was also recognized by Veselov (1964) 

through a different reasoning. 
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2.3.   The Approach Through the General Theory of Relativity 

2.3.1.   Principles; the Kinematical Potentials 

hi the theory of relativity, space is combined with time into a space-time 

continuum.1   The space-time of the special theory of relativity is a four dimensional 

manifold with coordinates 

x1=x,     x,=y,     X3=z,     x4  = t , (72) 

whose line element ds may be expressed as 

ds2  = (^dt? - (dx2 + dy3 +dzs)   , 

where c is the velocity of light in vacuum.   For the purpose of the present paper 

it is more convenient to divide by the constant c2, thus using for the line element 

the expression 

ds2  = dl3 - c-8(dx3 + dy3 + dza)   . (73) 

This may also be written 

ds2   = dt* -c_2dx1dx1   , (74) 

where Latin indices denote the spatial indices 1, 2, 3 only; by (72) this expression 

is identical with (73), the summation convention being kept in mind. 

1 There are many excellent introductions to the theory of relativity.   We mention 

(Bergmann, 1942), (Adler, Baijn, and Schiffer, 1965) and, more advanced but 

highly original, (Synge, 1964 and 1960);  some more may be found in the list of 

references. 
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Now we shall introduce a further formal change, writing superscripts instead 

of subscripts: 

ds*  = dl? - cTadxf drf   . (74') 

Here dx'  is only another notation for dx,  ; this notation is in agreement with 

tensor calculus, where "covariant" indices are distinguished from "contravariant" 

indices, the former being written as subscripts, the latter as superscripts. 

Because the dx1 form a contravariant vector, the notation (74') is in agreement 

with tensor notation and therefore sometimes preferable. 

The expression (74') has the general form 

ds3  = g„fldxadx^ , (75) 

if we include dt as dx4 in agreement with (72) (note that the superscript 4 is not 

an exponent!) and let Greek indices run from 1 to 4, whereas, as we have mentioned, 

Latin indices run from 1 to 3 only.   Because of the summation convention, (75) is, 

of course, equivalent to 

*       4 a    a 

rhe matrix ga» , the covariant fundamental tensor, has the form 

r-<ra      0        0      o' 

0       c_a       0 

1      0 0        (T2      0 

0 0 0       1 

as we recognize by comparing (75) and (74').   That is, we have 
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8*4     "    1    • 

««   - 8*,   - 0   • (77) 

»i i c      i j    • 

The fundamental tensor ga-j has this simple diagonal form with constant 

coefficients only in an inertial coordinate system without gravitational forces. 

Such inertial coordinate systems in space-time are the four-dimensional analogue 

of rectangular coordinates in space. 

If we use curvilinear coordinates in space-time, then the g  „ will no 

longer be equal to the constant values (77).   This will happen with non-inertial 

coordinate systems such as accelerated or rotating frames:  although the spatial 

3-system is rectangular, it forms together with time a curvilinear 4-system. 

As an example, consider the rectangular non-inertial system x,   = (x, y, z) of 

sec. 2.2.   In the inertial system X,   = (X, Y, Z) , the fundamental tensor will 

have the simple form (76), so that 

ds3  = dt2 - c-adXjdX1   . (78) 

According to the transformation formula (52*) we have 

dX,   = an dxj + (a,} \t + B,) dt . 

Substituting this into (78) we obtain 

ds3  - ga^dxadx^ (79) 

where now 

g^   = l-cra(wjlwk/x,xll -2w,kbJxk+b,b,)   , 

8u   = 8»t   = ^(Wt^i -t>i)  ■ (80> 

Si J c     i i 
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Here we have used (55), (60), (61), and the substitution 

b,   «*,,£,   • (81) 

As we have mentioned, the non-constant values (80) correspond to a curvi- 

linear coordinate system in space-time.   In the general theory of relativity Einstein 

showed that also a gravitational field can be represented by curvilinear coordinates 

in space-time, that is, by non-constant gcg .   Li this sense, gravitation and 

inertia are equivalent; this is the important Principle of Equivalence, which also 

explains the identity of inertial and gravitational mass. 

In a system which as a whole is unaccelerated and nonrotating but which 

contains gravitational forces, the g Q may be represented as power series with 

respect to c~a , the inverse square of the velocity of light (Bergmann, 1942, 

p. 226): 

g.4  = l + <T8h44 +c~*h44 + c~6h44 + •••   , 
1 2 3 

g*,   * c-*^, +c~eh41 +•••   , (82) 
a 3 

4J   '     -C"S6n +cr*ht) +<T6htJ +—   . 
2 3 

Since in metric (c. g. s.) units, c"8 is an extremely small quantity, the 

different orders of magnitude are sharply discriminated in the expansion (82). 

The basic fact is that 

h44   = - 2 V  , (83) 
i 

where V is the ordinary Newtonian potential of gravitation.   That is, 

V -  k J *f   , (84) 
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where k is the gravitational constant, dm is the element of mass, and i is the 

distance between dm and the point to which V refers. 

It may be mentioned that the h, s are also related to V by 

2 

This fact will not be used, however, because in this paper we shall consistently 

limit ourselves to the linear approximation (linear in c~2) , which at present is 

sufficient for almost all practical purposes: 

g4,   = l-2c-sV , 

gu   - 0   , (85) 

The fact that only the Newtonian potential V occurs in the linear approxi- 

mation suggests that the results obtained by using (85) will be essentially equivalent 

to classical mechanics; and every textbook on general relativity shows that this is 

indeed true.   Physically, the linear approximation corresponds to a slow motion 

(velocity <<c) in a weak gravitational field (such as that of the earth, the sun, etc.). 

Let us now perform the transition to an accelerated and rotating frame.   In 

exactly the same way as we transformed (77) into (80), we transform (85) into 

8i4  =8»!   " e-8(wnXj -b,)  , (86) 

To get a better understanding of these formulas, consider a system xyz 

connected with tb« rotating earth, the z-axis coinciding with the axis of rotation. 
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Then 

b,   = 0  , (87a) 

0    ui    0   x 

(wn) =   j   -cd    0     0 

0     0     0 

I 
(87b) 

/ 

so that (86) reduces to 

£4   = l-c-tW + oftf+y*))  , 

g14  ■ crawy . 

&4  " - c"s ux , (88) 

fe*  - 0  - 

Sf j   ■ " c"a6ij   • 

Introducing the potential of gravity (gravitation plus centrifugal force), 

W - V + fcw^+y8)   , (89) 

we see at once that 

g^  « l-2c"aW ; (90) 

that is, g^ is (apart from constants) essentially identical with the potential of 

gravity- 

Similarly, if there is no rotation, (85) shows that g^ is essentially identical 

with the potential of gravitation,  V.   The fact that in (88) the potential of centrifugal 

force enters into g^4 in a natural way, is another expression of the Principle of 

Equivalence, since gravitational and inertial forces occur in g^ side by side in 

an equivalent manner. 
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Thus in (88), g^4 contains the statical components of the gravity field: 

gravitation and centrifugal force.   It may be shown that the velocity-dependent 

component of the gravity field, the Coriolis force, is expressed by the quantities 

g, 4.   We therefore infer that, also in the general case of (86), the complete set 

of gaß will express all features of the combined gravitational-inertial field; the 

gaß may therefore be called the kinematical gravity potentials. 

Thus the extension of physical geodesy to moving systems requires the 

introduction of the complete set of the kinematical potentials gaß; the component 

g^4 equivalent to the statical potential W is no longer sufficient to characterize 

the gravity field. 

That the set of g « is necessary and sufficient for this purpose is expressed 

by the fact that the path of a particle under the combined influence of gravitational 

and inertial forces is a geodesic 

J* ds = J* Vgarfdx dx    = minimum  . (91) 

The path is therefore determined by the gan .   We shall return to this point later, 

but we mention already here that the evaluation of (91) by means of the calculus of 

variations, using the ga« as expressed by (86), leads just to the equations of motion 

(63) found previously (the restriction to the linear approximation being always under- 

stood). 

Velocity, acceleration, force.   Since space-time is four-dimensional, it 

is natural to define four-dimensional equivalents of terms such as velocity, 
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acceleration, or force.   The 4-velocity is simply defined as 

or      dx^      ^dx    dy_   dz    dt N 
U ds    = ^ds* ds* ds' dsJ * (9Z) 

From expressions such as (78), (80), or (82) we see that in every case 

ds3  * dl? + 0(cra)  , 

where 0(c~a) denotes small terms of the order of c~2.   Hence also 

ds = dt+0(cr3)  , (93) 

so that 

^-l + o«r3) . 

Neglecting a relative error of 0(c~a) in agreement with our linear approximation, 

we simply have 

dxa 

utt -  ~-  = (i, y, z, 1) + 0(c-a)  , (94) 

where, as usual, x - dx/dt, etc.   Hence, to the approximation considered, the 

(X spatial components of the 4-velocity u   are the components of the ordinary 

3-velocity 

v»   * Xj   = (x, y, z)   ; (95) 

the temporal component is 

u*   = 1  . 

The four-dimensional generalization of acceleration is less trivial.   It 

would be obvious to define 4-acceleration by 

du d3x 
ds    *   ds3      ' 

in analogy to (92), but it is shown in general tensor calculus that du /ds is not a 
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vector (as far as transformation properties are concerned).   Instead, it is necessary 

to define the vector of 4-acceleration by 

6s 6s3 

where ou /6s is the "covariant derivative" 

6ua      dua    jx    fly 
6s ds fly 

the Christoffel symbols r~    being given by 

(97) 

(98) 

where the matrix (gaP), the contravariant fundamental tensor, is inverse to the 

matrix (gaf) . 

The second term on the right-hand side of (97) is of decisive importance, 

because it expresses the gravitational and inertial forces,   hi fact, we have (always 

in the linear approximation), for the inertial system, the gaß defined by (77): 

a1   - x,   , 
(99a) 

a4   » 0  ; 

for the purely gravitational system (85) : 

.       ..       oV   , a*   = x, - — 
ÖX» (99b) 

a*   - 0  ; 

for the non-inertial gravitational system (86): 

ai   = ^   _ _   -2wljX] -(wn +w1kw3k)Xj + b,   , 

(99c) 
a*  - 0  ; 
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here we have used subscripts instead of superscripts for the x and their derivatives 

in order to be in agreement with the notation of sec. 2.2. 

A geodesic is a line along which the 4-acceleration is zero: 

aa = 0 . (100) 

In fact, the evaluation of (91) by the calculus of variations leads to the equation 

d8x<* ^a   d/ dxy      . „A,% 

dF+I>yds- -d7 = 0  ' (101> 

which is identical with (100), as the comparison of (96) and (97) shows. 

By (99 a, b, c), the formally simple condition (100) leads indeed to the 

correct equations of motion of a particle subject only to gravitational and inertial 

forces (if present), but free otherwise. 

The four-dimensional generalization of Newton's fundamental law, force 

equals the product of mass and acceleration, will be 

f * m aa    ; (102) 

but it should be noted that all gravitational (and inertial) forces are to be excluded 

from the 4-force f .   As usual, we put the mass m equal to unity, so that 

<"-."-«£ • om 
Oonsider now the case (99c), corresponding to the moving measuring apparatus of 

sec. 2.2.   Here we must put x, ■ 0 - x,   , because the measuring system is at 

rest with respect to the frame xyz.   Then from (99c) and (1021) we have 

(103) 
f*   = 0  . 
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Comparing this with (67) we see that 

f1   =  - f: *  ; (104) 

that is, apart from the sign, the spatial components of the 4-force f0 are identical 

with the apparent force f * of sec. 2.2.   The difference in sign expresses the 

principle of action and reaction: f * is defined as the acting force, whereas f1 

is the force of reaction arising from the measuring system being forced to remain 

at rest in the frame xyz. 

The agreement between classical and relativistic analysis, as expressed 

in (104), was to be expected for the linear approximation, because Einstein's 

theory goes over into Newton's theory for weak fields and low velocities.   To a. 

certain extent, this fact confirms the results obtained at the end of sec. 2.2 , 

because with (104) also the validity of (69) is verified.   As for the case of inertia! 

stabilization, leading to (71), the possibility of such a stabilization in the presence 

of a gravity field ought to be investigated by means of the general theory of relativity. 

This will be done in sec. 2.3.3 ; an inherently relativistic method will then provide 

a final justification in sec. 2.3.4. 

2.3.2.   Gravitational Gradients and the Riemannian Tensor 

Let us start with a simple example familiar to the geodesist.   Consider 

rectangular coordinates x, y in the plane; then the line element will be given by 

ds2  = dx8 + dy2   . (105) 

On introducing curvilinear coordinates u, v in the plane by 

x = x(u,v)  , 
(106) 

y ' y(u,v)  , 
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the line element (105) takes the form 

ds3   = Edu3 + 2Fdudv + Gdv3   , (107) 

where E, F, G are functions of  u and v. 

The line element on an arbitrary curved surface has the same form (107). 

We may therefore ask by which criterion one is able to recognize whether a line 

element of the form (107) refers to a curved surface or to a plane.   The answer 

(due to Gauss) is as follows:  Form a certain expression containing E, F, G and 

its first and second derivatives; this expression is called Gaussian curvature.   If 

the Gaussian curvature is zero, then (107) refers to a plane and can be transformed 

into the simple form (105); if the Gaussian curvature is nonzero, then (107) refers 

to a curved surface and cannot be transformed (over a finite area) into (105). 

The remarkable fact is that the principle of Einstein's theory of gravitation 

is the extension of two-dimensional Gaussian surface theory to four-dimensional 

space-time; this fact should be particularly appealing to the geodesist. 

The flat space-time of special relativity corresponds to the plane; in fact, 

by substituting 

ic_1x ■ £  ,   ic-1y = r\,   ic-1z = £  , 

the line element (73) goes over into 

dsa   » d£a + drf + dC2 + dt?   , (108) 

which is the precise four-dimensional equivalent of (105).   Thus the inertial 

systems of special relativity correspond to the rectangular coordinate systems 

in the plane.   Transformations to accelerated and rotating frames after the fashion 
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of (52*) correspond to the transition to curvilinear coordinates in the plane 

(equations (106)), and the resulting expression (79) is the four-dimensional 

equivalent of (107); in fact, in two dimensions, 

gu   = E,     g12   = fel   = F,     &2  » G. (109) 

A transition to "curvilinear coordinates" (accelerated and rotating frames) 

in space-time without gravitation does not change its flat character, in the same 

way as the plane, even when expressed in curvilinear coordinates, still remains 

a plane.   Thus the ga a of (80) still refer to flat space, although inertial forces 

occur. 

The gao of (82), however, which express a true gravitational field, are of 

a completely different character.   They are comparable to the E, F, G of a curved 

surface.   Gravitation corresponds to a curved space-time. 

m surface theory the criterion of flatness is the Gaussian curvature. Its 

four-dimensional generalization is the Riemannian curvature tensor, a set of 20 

independent quantities.   If all these quantities are zero, if 

Ra/3y6 = °  » <110> 

there is no gravitation, no matter how complicated the gaß look; in this case 

there are only inertial forces. 

Gravitation gives rise to a curved space-time and thus to a nonzero 

Riemannian tensor; we may write symbolically (Synge, 1960, p. 109) : 

Raßy 6 * gravitational field. (Ill) 

The analytical expression of Raovg contains the ga g and its first and 

second derivatives; we have 
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(112) 
+ gui; CIaöIVy ' T^yTßöJ ' 

the Christoffel symbols being defined by (98) . 

Since R  „   . contains second derivatives of g  n, we cannot hope to be 
aßyb aßr 

able to separate gravitational and inertia! effects using the potential H?»*) or 

its first derivatives, that is, the force vector, only.  Separation, if possible at 

all, can only occur with second or higher derivatives; this is in agreement with 

the results of sec. 2.2  obtained from classical mechanics.   This is another 

confirmation of the importance of second (and possibly higher) derivatives in 

kinematical geodesy. 

The individual components of the Riemannian tensor show a clear 

distinction as to order of magnitude, the differences being of the order of 

cr3,   Using (82) with (112) we find 

*■"'« *-*^+0(tr8) ■ 

c3^^ = 0(cra)  , (H.3) 

cSR,,** - °(c"a) ; 

the other components are either expressible through these or are zero (e. g., 

Synge, 1960, p. 16).   The Latin subscripts denote spatial indices, as usual. 

We see that R, t k . and Rn k4 are smaller than R, 4} 4 by the factor 

c~2 .   Hence, neglecting 0(c"a) as usual, we have 
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so that the only surviving equation of (113) is the first; with (83) we have 

This simple equation shows that the component R, 4 s 4 of the Riemannian curvature 

tensor is essentially equivalent to a second derivative of the gravitational potential 

V.   This will be extremely important for the following sections. 

If we had used the ga» of (86) instead of (85) we would have obtained the 

same result (114) since the contribution of the inertia! forces to the Riemannian 

tensor is zero. 

2.3.3.   Gyroscopic Stabilization and Fermi Propagation 

At the end of sec. 2.2  we have seen that gravitational effects are separated 

from inertial disturbances already in the second derivatives if the instrumental axes 

xyz are kept constantly parallel to the inertial axes XYZ. 

This result is consistent with the relativistic approach of sec. 2.3.1 , but 

the method of keeping the instrumental axes permanently parallel must be 

examined.   The direction of the instrumental axes is kept constant by ineitial 

stabilization by means of gyroscopes.   The principle is that the axis of a freely 

spinning gyroscope maintains its direction even if its frame is accelerated or 

rotated; furthermore, the axis is unaffected by gravity. 

It is by no means obvious that this is true also in the general theory of 

relativity; one should even be inclined to suspect the contrary.   Therefore, this 
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problem deserves closer examination. 

First of all, the question arises as to whether something like constancy 

of spatial direction, or briefly, a nonrotating frame, can be defined within general 

relativity.   Surprisingly enough, this is possible even in a local manner (an 

example to the contrary: uniform motion of a mass point cannot be defined in 

an intrinsic local way).   The relevant concept is Fermi propagation, which is 

considered in detail and used extensively in (Synge, 1960).   In view of the importance 

of Fermi propagation, it is surprising that this concept is not even mentioned in 

any other standard text on relativity known to the author.1 

Synge interpreted Fermi propagation physically by means of an idealized 

optical experiment ("the bouncing photon").   Pirani (1956) pointed out that the 

axis of an idealized gyroscope ("spinning test particle") also follows Fermi 

propagation.   To show this, he v-sed Papapetroife (1951) equation of motion of 

the spin of a spinning test particle.   Papapetrou's (1951) developments refer to 

a free test particle; he later (Papapetrou and Urich, 1955) generalized them to a 

spinning particle moving in an electromagnetic field and found the same spin 

equations.   For our present purpose, where we have a free gyroscope whose 

frame performs a constrained arbitrary motion, the case of a freely spinning 

test particle under the influence of external forces would be relevant.   This case 

can be handled by an extension of a method of (Weber, 1964).   The result is that 

1The "successive Lorentz transformations" of (Miller, 1952, ^S 46 and 96) are 

essentially equivalent to Fermi transport specialized to f'-t space-time. 
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the equation of motion of the spin is the same as for a free particle; therefore, 

Fermi propagation holds also for the axis of a free gyro whose frame performs 

an arbitrary constrained motion.   See also (Bertotti, 1962, p. 184) and (Bertotti, 

Brill, andKrotkov, 1962). 

The equation of Fermi propagation may be written as 

ß 6XJ 
ös 

a       s    r 6u     or      6u     AN ,,,_. 
7 -^C"o7u   - -o7u) (115) 

(Synge, 1960, p. 13).   Here \a (or Xo ) are the contravariant (or covariant) 

components of the vector undergoing Fermi propagation.   The vector ua is the 

4-velocity (92), the unit vector of the tangent to the particle's "world line." Its 

covariant derivative is given by (97>, and the covariant derivative of \a is 

defined accordingly by 

In our case, the vector X represents the spin axis of the gyro. It lies 

in the instantaneous 3-space of the spinning particle and is consequently ortho- 

gonal to u 

uV = 0  . (117) 
a 

For space-like vectors satisfying (117) the general equation (115) reduces to 

£ - \i "a ■ 
OL (X This equation expresses the fact that the change 6X /5s has the direction of u 

and consequently no component in the instantaneous 3-space.   This fact already 

suggests that Fermi propagation is related to spatial parallelism. 
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Consider now a system of three orthogonal vectors X   , each of them 

being represented by the axis of a freely spinning gyroscope.   In this way the 

axes of a rectangular xyz system in space may be realized physically.   Will 

now the respective coordinate axes so defined remain parallel to each other in 

the ordinary sense if the frame of the three gyros is moved arbitrarily in space, 

corresponding to the motion of the carrier aircraft? 

The answer will be obtained by applying the linear approximation (85) 

to Fermi propagation.   For the spatial components X1,  in which we are interested, 

we may write (118) as 

f- • *■' <119> 
where the factor $ is given by 

* " xß~& ' V IT • (120) 

m the global coordinate system xyzt of (85) the series expansion of the vector X 

in the fashion of (82) reads 

X!   = X1 + c~a X1 + c-4 X1 + • • •   , 
0 1 2 

(121) 
X*   = c-8 X4 + c-4 X4 + ' *'   , 

1 2 

because a non-zero X4 would be incompatible with the orthogonality condition 
o 

(117).   We further have, in agreement with definition (96), 

6u* • a1   = a1 + c"*3 a1 + •■ 
6s o i 

&£- = a*   » c"a a4 + • 
fis , 
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I 
i 

because a*   = 0 from (99b) . 
o 

We now insert (85), (121), and (122) into (120).   The result is 

♦ = (l ^cr^c"^^^-^^ + 0(cr4) = 0(crs) . 
11 0   0 

Thus from (119) we have 

AA1 

■JJ-  - 0(CS)   ; (123) 

that is, the change of A1  (the gyro axis) is of the order of c~2 and may therefore 

be safely neglected. 

Thus, general relativity confirms the fact that gyroscopic stabilization of 

instrumental axes is indeed possible; the effect of the gravity field is negligible 

in this case. 

2.3.4.   Application of Synge's Method 

Synge (1960, pp. 156-158) has given a general theory of a "relativistically 

valid geodetic survey" to determine the Riemann tensor, which expresses the 

gravitational field.   His formula is 

a      f o" X (t) 68X (b)   <v 
R(.bcd)  - gaf? (.} ^oy(e)0y(d)   - *y(d)6y(c) ) • (124) 

The subscripts (a), (b), (c), (d) assume the values 1, 2, 3, 4 each.   The coordinates 

OL 
x    are expressed in terms of four parameters y/a \ by equations of the form 

xa ■ xaf(y(l), y(3), y(s), y<4)) ; (125) 

then 

A) -1£ <126> 
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form a tetrad to which the components R/ated\ refer. 

We shall now specialize the parameters in such a way that the base vectors 

of the tetrad become 

X0) = X%)    for   * = 1$ 2* 3*   ; (127a) 

Xl)  = Xl) = u"  * <127b> 
Ct Ct Ot (X 

Here X/jU ^/3\» \zy X/4v are to form a system of four orthogonal unit vectors, 

ct 
the first three X.,» lying in the instantaneous 3-space of the moving particle, and 

ct ct the "time-like" unit vector X/4\ is identical with the 4-velocity u   tangent to the 

world line of the moving apparatus.   The vectors X u v , X/Sv , A,3v are propagated 

along the world line by Fermi transport.   The R/abcd\ are the components of the 

a 
Riemannian curvature tensor in the local system of the four unit vectors X /a\ . 

By comparing (126) and (127a) we see that 

a , a 
dx ..a .a ot      ax 
9y(4)       \*>        <*) ds 

so that along the world line under consideration we have (the point s ■ 0 being 

suitably chosen) 

y(4)  -  s   , (128) 

and by (93) 

y(4)  = t+0(c"a)   . (129a) 

Similarly we may take 

y(1)  = x + 0(c-8)   , 

y(2) - y+0(c-a)   , (129b) 

y(3)  =  z + 0(c"s)   ; 
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according to (123), the change of the spatial Xj . is only of the order of c~2, 

so that to this accuracy they may be identified with the unit vectors of three- 

dimensional inertial coordinates; therefore the identification (129b) is per- 

missible. 

With the measuring accuracy possible at present, it is best to concen- 

trate on the components R(l4J4) of the curvature tensor, where i, j - 1, 2, 3 ; 

by (113) these components are predominant by the order of c8. 

The following derivations are rigorous; the approximations (129a, b) 

will be introduced only at the final stage.   By (124), (127b). and (128) we have 

along the world line 

VH)      &a/3A(i) Uy(j)6s       6s6y(J);   * (130) 

(X Introducing the 4-force f   by (102') we obtain 

#J „ sa    6r .a     6zu ,,„A„ 
V««> - V(o ^" Vw teS^ • (130 > 

We shall now prove the relation 

^- = 6X0)      . (131) 
6y(0        ös 

By the definition of the covariant derivative '.ve have 

6uf 5uf    +Tß     y i?L_ asx/?       ß     y 6 
6y(o * Sy(o +  yfiU 9y<>) " 9yo9s +   yßU   (0 ' 

iiia - ÜJÜ + r0  ,y   axj _ Jfxi . r/?   ,y  u6 
6s     ~    Ss x y6A(j) 9s    " ösöy(j)     * y6   (3)u    * 
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Because the order of two consecutive partial differentiations can be interchanged, 

and because Ty6 is symmetric with respect to y and 6, these two expressions 

are identical, and (131) has been proved. 

Hence 

JSL.Zb      . U32, 
»•*<»)    to? 

The second derivative on the right-hand side may be evaluated by twice applying 

the formulas for Fermi propagation; for convenience we drop the subscript (j). 

First (118) gives 

*£ - g   X6 *£ u* 
6 s       8y6A    6s 

or, by (102») , 

£ - ■%/*• • «i33> 
a 

Writing (115) for an arbitrary vector L   we have 

Ol ,- g    iV^ir* - *£#} . 
6s        gy6     V. 6s 6s      J 

ß 
Substituting for L   the expression (133) gives 

again using (102').   Since u'' is a time-like unit vector we have (Synge, 19C0, 

P. 2) 

g  eu
7un = -1 (134a) j 

öv6 
I 

and on differentiation with (102') 
I 

g ,fyu6 - 0  . (134b) ! 
yö 

I 
50 j 

1 

J 



By means of these equations we finally obtain 

*£-**   fV. . , .  g     f"A"   . (135) 
6s3 °uv 

Hence (132) becomes 

6s6y0)       
rgu/  X <0 ' 

so that (130') goes over into 

VH> " V» £ " Vw^„/'{/- <136> 
We now have (Synge, 1960, p. 10) 

V« " vV ■ fw • (137> 

the "covariant" components of f0 wilh respect to the orthonormal triad A 7« . 

By differentiation of (137) we find 

The first term on the right-hand side is zero because the covariant derivative 

of the fundamental tensor g     is identically zero; the second term can be made 

zero by a suitable choice of parameters y/t\, and the third term is identical 

with the first term on the right-hand side of (136).   Thus (136) becomes,(137) 

also being considered, 

VJ4) = s^jj" _f(of(j) • (138) 
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This simple result ie rigorous.   Still using no approximation, it is 

appropriate to go over to upper ("contravariant") indices by 

f0)  = *(,.)*>   • 

where g,,  . is the matrix (76); cf. (Synge, 1960, p. 9).   Since 

f<4) m t u
a B o 

a 

by (134b), we find 

f(l)  =  -cr2f(0   . (139) 

Thus (138) becomes 

^V*4) a" §7 -°"8f(,)f(J) • (14°) 
This formula, slightly less simple than (138) and as rigorous, is more instructive 

because f 0) is equivalent to an ordinary 3-force also with respect to magnitude, and 

thus the orders of magnitude are immediately obvious in (140). 

Now we shall finally proceed to our usual linear approximation.   Evidently 

the second term on the right-hand side of (140) can be neglected, and there 

remains 

c8V") = - f^f, • (140,) 

Conformably we may use the identification (129b) , 

y(1)  - x, +0(c-2)  , 

so that 

fW  = f1 +0(c-3)   , 

R(f4J4)    "    R.4J4   +0(C"2)    . 
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Thus (140') reduces in the linear approximation to 

**«*" =" fr • (141) 

This equation expresses certain components of the Riemanni&n curvature 

tensor in terms of the measurable gradient of the 3-force f .   By (114), which 

reads 

„2n _    *aV 

these components are connected with the second derivativ«, j of the gravitational 

potential V.   Thus we obtain by comparing these two equations: 

dXj dXj öXj 

This equation is identical with (71) because of (104), but was obtained by 

a strictly relativistic argument.   This result is of importance because it pro- 

vides the final justification of the approach through classical mechanics.   The 

effect of the inertia! forces is indeed removed if second derivatives of the 

potential are measured by means of a gyroscopically stabilized apparatus. 

2.3.5.   Relativistic Conclusions 

The analysis of our problem by means of the general theory of relativity 

has confirmed the result of classical mechanics that gravitational and inertial 

forces can in fact be separated, at least to a very good approximation, in the 

second and higher derivatives of the potential. 
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On the one hand, this is to be expected because Einstein's theory of 

gravitation goes over, as a limit for a weak gravitational field and low veloc- 

ities, into Newton's theory.  On the other hand, there seems to be a disagree- 

ment with basic principles of general relativity, in particular with the Principle 

of Equivalence, according to which gravitational and inertial forces are basically 

identical.  The obvious conclusion from this principle is that these two kinds of 

forces are indistinguishable and cannot, therefore, be separated. 

Our results are also in apparent disagreement with the Principle of 

General Covariance, according to which all coordinate systems (inertial and 

noninertial, unaccelerated and accelerated, nonrotating and rotating) are 

equivalent in principle; there are no "privileged" coordinate systems (such as 

inertial systems) when gravitation is present.   How can we explain these con- 

tradictions? 

Both the Principle of Equivalence and the Principle of General Covariance 

have played a fundamental heuristic role in Einstein's considerations leading to 

his theory of gravitation around 1915, because these principles provide a natural 

and mathematically obvious transition from the flat space-time of special 

relativity to the curved space-time of general relativity.  Since Einstein's 

heuristic procedure, although it is not a logical deduction, possesses great 

intuitive force, it is strongly emphasized in almost every introductory textbook 

on general relativity, subtler distinctions being usually disregarded or bypassed. 
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Our present problem, however, requires precisely these subtler dis- 

tinctions.   We shall briefly present our point, which is in essential conformity 

with Fock (1959) and Synge (1960). 

We start with the Principle of General Covariance.   The application 

of the relativist theory of gravitation to the region of our solar system 

requires boundary conditions at infinity: with increasing distance from the 

attracting masses the effect of gravitation vanishes, and the curved space- 

time becomes flat at infinity.   This fact permits the introduction of uniquely 

defined privileged coordinate systems, the harmonic coordinate systems, 

which to a certain extent correspond to the inertia! coordinate systems of 

special relativity (Fock, 1959). 

Harmonic (or "isothermic") coordinates date back to de Donder in 

1921 and Lanczos in 1922; their geometrical and physical significance is 

explained in (Darmois, 1927) and (Levi-Civita, 1950), and their uniqueness 

in connection with the boundary conditions at infinity has been investigated by 

Fock (1959), who used them consistently and strongly emphasized (and perhaps 

overemphasized) their significance. 

General covariance is an extremely efficient means of expressing physical 

laws as general theorems of the geometry of space-time by means of the tensor 

calculus.   It does not really assert, however, that in some cases physical laws 

may not assume a simpler form in certain privileged coordinate systems.   The 

gravitational equations do assume a simpler form when a harmonic coordinate 
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system is used; for instance, such a "quasi-inertia!" system underlies the 

expansion (82). 

As to the Principle of Equivalence, it is undoubtedly true (because of 

the identity of gravitational and inertial mass) as long as the force acting at 

one point only is considered.  As soon as we consider a region in space, even 

an arbitrarily small one, however, we have an objective criterion as to whether 

a true gravitational field is present or not.   For then we can form the Riemannian 

tensor by means of the forces and their first derivatives (the derivatives being 

obtained if the forces are known in an arbitrarily small region); cf. equation 

(138).   If the Riemannian tensor vanishes, there is no gravitation; if it is 

different from zero, there is a true gravitational field.   For careful exposi- 

tions of the Principle of Equivalence see (Eddington, 1924, pp. 39-41) and 

(Bergmann, 1962, pp. 204-206). 

The Riemannian curvature provides a criterion for the presence of a 

gravitational field, but not yet a means for the separation of gravitational and 

inertial effects.   In fiat space-time inertial forces have an objective significance 

because they are due to the deviation of the observer's coordinate system from 

an inertial system, which represents a Cartesian coordinate system in space- 

time,   hi the presence of a gravitational field, however, space-time is 

irregularly curved, and the use of global Cartesian coordinates is no longer 

possible. 
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Thus a separation of gravitational and inertia! effects is feasible only if 

we succeed in introducing a privileged coordinate system sharing many desirable 

properties of Cartesian coordinates. and this separation is possible only to the 

extent to which the privileged coordinate system has the properties of Cartesian 

coordinates (it cannot have all of them because space-time is irregularly curved). 

Probably the best choice for such privileged "quasi-inertial" coordinate systems 

are the harmonic coordinate systems mentioned above.  Inertial forces, by 

definition, will men occur when the observer's coordinate system differs from 

a harmonic system. 

This is particularly evident in the linear approximation, because then 

the gravitational field can be assumed to be embedded in a flat space, and the 

harmonic coordinate systems can be identified with the inertial coordinate 

systems of this auxiliary flat space.   In fact, gravitational and inertial force 

fields are superposed linearly without interaction; compare equations (77) 

(flat space), (80) (pure inertial force field), (85) (pure gravitational field), 

and (86) (combined field of gravitational and inertial forces). 

Within the linear approximation, inertial systems (or rather three 

axes parallel to inertial axes in space) may be defined even locally; they 

coincide with global systems to an accuracy of 0(c~2), as we have seen in 

sec. 2.3.3 ; according to Eddington (1924, p. 9tf), a local terrestrial inertial 

coordinate system will deviate from a global inertial system by about 2 seconds 

of arc in a century. 
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Whereas geodesies, in general, by no means appear as straight lines in 

three-dimensional space (elliptical planetary orbits are geodesies ii: four-dimen- 

sional space-time!), it may be shown that null eeodesics representing light rays 

in vacuum do appear as three-dimensional straight lines (to 0(c"8); the bending 

of a light ray grazing the limb of the sun is a higher-order effect). 

Also, by (93), "proper time" s coincides to 0(c~a) with "coordinate time" 

t.   Hence, even in the "general theory of relativity" there are at least three 

"absolute" concepts in the linear approximation: time, straight lines in space 

(represented by light rays), and rotation; these concepts are absolute in the 

sense that they are practically the same whether viewed globally or locally, so 

that they can be determined even by local measurements. 

The deeper reason for the existence of the linear approximation is that 

gravitational and inertial effects show a characteristic hierarchy of orders of 

magnitude, the differences being of the order of c~a and therefore very marked. 

We may summarize the three main reasons for the possibility of separation 

of gravitational and inertial effects as follows: 

1. The Riemannian curvature tensor provides a means of locally 

detecting the presence of a gravitational field. 

2. Harmonic coordinate systems serve as "quasi-inertial" coordinate 

systems, with respect to which inertial forces may be defined. 

3. Sharply distinguished orders of magnitude greatly facilitate the 

separation. 
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The linear approximation, which is fully sufficient for our present purpose, 

makes our separation practically unambiguous; however, in more exotic gravity 

fields considered in general relativity, where harmonic coordinates that go over 

into inertia! Cartesian coordinates at infinity may not even exists, a separation 

of gravitational and inertia! effects may well be meaningless. 
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3.   General Conclusions 

The preceding analysis has shown that gravitational effects can be 

separated from inertial disturbances in the second derivatives of the potential 

in case of inertial stabilization, and in the third derivatives in the absence of 

stabilization.   This separation is possible because of the locally different 

behaviour of gravitational and inertial fields. 

In the first derivatives, forming the force vector, such a separation by 

means of mechanical principles is a priori impossible because of the identity 

of inertial and gravitational mass.   (It is, however, possible to remove inertial 

disturbances to a large extent by a suitable statistical filtering.) 

Thus, with the advent of measuring techniques using equipment in 

motion, the higher derivatives of the gravitational potential may well become 

of increasing use to geodesists.1   Therefore, we have discussed some relevant 

geodetic aspects in Chapter 1. 

It should be carefully kept in mind that the gravitational potential cannot 

be determined without external Information as to position, etc., even if the 

second derivatives can be obtained directly.   The reason is that integrations such 

as (5) and (6) or (32) requiie the knowledge of the position of the measuring instrument, 

for instance of the form (4).   This position cannot be determined by inertial naviga- 

tion only because inertial navigation systems cannot discriminate between gravitational 

1A measuring technique is discussed in (Thompson, Bock, and Savet, 1965). 
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and inertial accelerations, which are the input; we would thus be led to a vicious 

circle involving a bootstrap operation as mentioned in the Introduction. 

In the theoretical analysis of Chapter 2 we have restricted ourselves 

to the simplest case of inertial stabilization, in which the instrument axes 

are kept parallel to axes fixed in inertial space.  The results as to separability 

in the second derivatives hold, of course, also for >\e case in which the instru- 

mental axes are stabilized in such a way as to have a prescribed orientation with 

respect to the earth (in this case, the matrix w, 3 is different from zero but given, 

so that the right-hand side of (68) is known). 

The relativistic analysis of the separability of gravitation and inertia 

has provided an important confirmation of the results obtained through classical 

mechanics.   This analysis was necessary to remove the doubts raised by 

Einstein's Principle of Equivalence. 

The general theory of relativity is commonly accepted as the best theory 

of gravitation, and it is therefore natural that geodesy, which uses gravitation 

to a large extent, should be interested in it.   Furthermore, it has a particular 

appeal to geodesists because the geometric principle of Einstein's theory of 

gravitation is an extension of Gauss' surface theory, familiar to every geodesist, 

to four-dimensional space-time, and the relevant mathematical technique, tensor 

calculus, has been introduced into geodesy already some time ago by the work of 

Marussi and Hotine. 
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General relativity has so far been widely applied to problems of 

astronomy, and it similarly lends itself to application to kinematicjil geodesy; 

as an example, consider the "kinematic gravity potentials" (sec. 2.3.1 ) 

which generalize the gravity potential in a way necessary to take account of 

inertial forces acting on moving systems.   Matters may be somewhat com- 

parable to the use of Hamiltonian methods in satellite geodesy: although 

these methods are considerably more complicated mathematically than the 

simple Newtonian theory, they are much more efficient for the solution of 

some practical problems. 

The foundation for an application of the general theory of relativity to 

geodetic problems may be found in (Synge, 1930); the tendency, the mathe- 

matical methods, and the applications are particularly appealing to astronomers 

and geodesists.  As an example we mention Synge's "relativistically valid geodetic 

survey," which we have used in sec. 2.3.4. 

Relativistic methods should be useful in problems such as the kinematical 

measurement of gravitational effects or the interaction of inertial positioning 

systems with the gravity field, with which geodesy is likely to be confronted in 

the near future. 
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